首页 > 常用平台 > 正文

tf的seq2seq

标签:seq2seq, tensorflow


目录

使用tf,但独立于tensorflow/models之外的一个seq2seq的框架:

主页:https://google.github.io/seq2seq/

1. 简介

对应的论文: Massive Exploration of Neural Machine Translation Architectures

整体架构图:

2. 安装

首先安装python-tk(python的gui)

apt-get install python-tk

然后设置matplotlib的backend

echo "backend : Agg" >> $HOME/.config/matplotlib/matplotlibrc

然后安装seq2seq

cd seq2seq
pip install -e .

测试一下

python -m unittest seq2seq.test.pipeline_test

3. 基本概念

4. 示例:nmt

经典:

4.1 数据格式

正常的分词是空格切分或者常用的分词工具(如Moses的tokenizer.perl、框架有spacy/nltk/stanford的分词)。

但用于nmt时存在如下问题:

  • nmt输出的是在词上的概率分布,所以如果可能的词很多,那么会非常慢。如果vocabulary中有拼错的词和派生词,那vocabulary就可能趋向无穷大……而我们实际上可能会人工限制vocabulary size在10,000-100,000的范围内。
  • loved和loving来自同一词根,但却被当成完全不同的两个词来看待。

对于这种open vocabulary的问题一,一种解决方法就是从给定的文本中学习subword units。例如,loved可以被分成lov和ed,loving可以被分成lov和ing。这样,一方面可以产生新的词(unknown words),另一方面,可以缩减vocabulary size。本示例用到的就是Byte Pair Encoding (BPE)

用法:

# Clone from Github
git clone https://github.com/rsennrich/subword-nmt
cd subword-nmt

# Learn a vocabulary using 10,000 merge operations
./learn_bpe.py -s 10000 < train.tok > codes.bpe

# Apply the vocabulary to the training file
./apply_bpe.py -c codes.bpe < train.tok > train.tok.bpe

结果如下,会用对不常见的词(如例子中的Nikitin)使用@@进行切分。

Madam President , I should like to draw your attention to a case in which this Parliament has consistently shown an interest. It is the case of Alexander Ni@@ ki@@ tin .

4.2 数据下载

使用预处理过的English-German WMT’16 Translation Task的数据集进行训练。 参考wmt16_en_de.sh,需要自定义OUTPUT_DIR变量。这个脚本下载数据、使用Moses Tokenizer进行分词、清理了training data、学习了约32,000的vocabulary大小的subword units.也可以直接去google drive下载预处理过的WMT’16 EN-DE Data (502MB)

格式如下:

文件名 描述
train.tok.clean.bpe.32000.en The English training data, one sentence per line, processed using BPE.
train.tok.clean.bpe.32000.de The German training data, one sentence per line, processed using BPE.
vocab.bpe.32000 The full vocabulary used in the training data, one token per line.
newstestXXXX.* Development and test data sets, in the same format as the training data. We provide both pre-processed and original data files used for evaluation.

然后需要设置环境变量:

# Set this to where you extracted the downloaded file
export DATA_PATH=

export VOCAB_SOURCE=${DATA_PATH}/vocab.bpe.32000
export VOCAB_TARGET=${DATA_PATH}/vocab.bpe.32000
export TRAIN_SOURCES=${DATA_PATH}/train.tok.clean.bpe.32000.en
export TRAIN_TARGETS=${DATA_PATH}/train.tok.clean.bpe.32000.de
export DEV_SOURCES=${DATA_PATH}/newstest2013.tok.bpe.32000.en
export DEV_TARGETS=${DATA_PATH}/newstest2013.tok.bpe.32000.de

export DEV_TARGETS_REF=${DATA_PATH}/newstest2013.tok.de
export TRAIN_STEPS=1000000

4.3 小数据集:generate toy data

直接跑toy.sh就行了,然后设置一下环境变量

export DATA_PATH=
export DATA_TYPE=copy # or reverse

export VOCAB_SOURCE=${DATA_PATH}/nmt_data/toy_${DATA_TYPE}/train/vocab.sources.txt
export VOCAB_TARGET=${DATA_PATH}/nmt_data/toy_${DATA_TYPE}/train/vocab.targets.txt
export TRAIN_SOURCES=${DATA_PATH}/nmt_data/toy_${DATA_TYPE}/train/sources.txt
export TRAIN_TARGETS=${DATA_PATH}/nmt_data/toy_${DATA_TYPE}/train/targets.txt
export DEV_SOURCES=${DATA_PATH}/nmt_data/toy_${DATA_TYPE}/dev/sources.txt
export DEV_TARGETS=${DATA_PATH}/nmt_data/toy_${DATA_TYPE}/dev/targets.txt

export DEV_TARGETS_REF=${DATA_PATH}/nmt_data/toy_${DATA_TYPE}/dev/targets.txt
export TRAIN_STEPS=1000

4.4 定义模型

标准的模型是seq2seq with attention,它有大量的超参数。在example_configs下有small/medium/large等conf,例如,medium的conf:

model: AttentionSeq2Seq
model_params:
  attention.class: seq2seq.decoders.attention.AttentionLayerBahdanau
  attention.params:
    num_units: 256
  bridge.class: seq2seq.models.bridges.ZeroBridge
  embedding.dim: 256
  encoder.class: seq2seq.encoders.BidirectionalRNNEncoder
  encoder.params:
    rnn_cell:
      cell_class: GRUCell
      cell_params:
        num_units: 256
      dropout_input_keep_prob: 0.8
      dropout_output_keep_prob: 1.0
      num_layers: 1
  decoder.class: seq2seq.decoders.AttentionDecoder
  decoder.params:
    rnn_cell:
      cell_class: GRUCell
      cell_params:
        num_units: 256
      dropout_input_keep_prob: 0.8
      dropout_output_keep_prob: 1.0
      num_layers: 2
  optimizer.name: Adam
  optimizer.params:
    epsilon: 0.0000008
  optimizer.learning_rate: 0.0001
  source.max_seq_len: 50
  source.reverse: false
  target.max_seq_len: 50

4.5 训练

单GPU(例如TitanX),即使是small模型,训练WMT’16 English-German数据要收敛得好几天。在8GPU的集群上,用tf的分布式训练,large模型需要2-3天。而对于toy数据,在cpu上,1000 step大概要10min。

export MODEL_DIR=${TMPDIR:-/tmp}/nmt_tutorial
mkdir -p $MODEL_DIR

python -m bin.train \
  --config_paths="
      ./example_configs/nmt_small.yml,
      ./example_configs/train_seq2seq.yml,
      ./example_configs/text_metrics_bpe.yml" \
  --model_params "
      vocab_source: $VOCAB_SOURCE
      vocab_target: $VOCAB_TARGET" \
  --input_pipeline_train "
    class: ParallelTextInputPipeline
    params:
      source_files:
        - $TRAIN_SOURCES
      target_files:
        - $TRAIN_TARGETS" \
  --input_pipeline_dev "
    class: ParallelTextInputPipeline
    params:
       source_files:
        - $DEV_SOURCES
       target_files:
        - $DEV_TARGETS" \
  --batch_size 32 \
  --train_steps $TRAIN_STEPS \
  --output_dir $MODEL_DIR

其中,参数如下:

  • config_paths:可以输入多个conf文件,会按顺序merge在一起。nmt_small.yml描述模型类型及超参数,train_seq2seq.yml包括了common options,例如,追踪什么metric、多久sample一次response。
  • model_params:可以重写模型参数,yaml/json格式。大部分参数其实在nmt_small.yml里都定义了,但
  • input_pipeline_train:如何读训练集。例子中是parallel text format。
  • input_pipeline_dev:如何读验证集。例子中是parallel text format。
  • output_dir:模型的checkpoint和summary的存放位置。

使用tensorboard监控输出目录(有log_perplexity和bleu等指标):

tensorboard --logdir $MODEL_DIR

4.6 预测

export PRED_DIR=${MODEL_DIR}/pred
mkdir -p ${PRED_DIR}

python -m bin.infer \
  --tasks "
    - class: DecodeText" \
  --model_dir $MODEL_DIR \
  --input_pipeline "
    class: ParallelTextInputPipeline
    params:
      source_files:
        - $DEV_SOURCES" \
  >  ${PRED_DIR}/predictions.txt

其中,

  • tasks:
  • model_dir:
  • model_dir:

4.7 使用beamsearch进行decode

beamsearch并不是使用贪心的方法去寻找最可能的词,而是keeps several hypotheses, or "beams", in memory and chooses the best one based on a scoring function.。可以通过指定model_params来使用beamsearch。另外,使用beamsearch会使预测时间变得significantly longer

python -m bin.infer \
  --tasks "
    - class: DecodeText
    - class: DumpBeams
      params:
        file: ${PRED_DIR}/beams.npz" \
  --model_dir $MODEL_DIR \
  --model_params "
    inference.beam_search.beam_width: 5" \
  --input_pipeline "
    class: ParallelTextInputPipeline
    params:
      source_files:
        - $DEV_SOURCES" \
  > ${PRED_DIR}/predictions.txt

另外,上面的例子显示了,tasks参数可以传多个task进去;另外,还把结果存放在了${PRED_DIR}/beams.npz中。用法:

import numpy as np
r = np.load("/tmp/nmt_tutorial/pred/beams.npz")
print r.files
##得到:['predicted_ids', 'beam_parent_ids', 'log_probs', 'scores']

4.8 基于checkpoint进行评估

infer脚本默认只评估最新的checkpoint,如果想指定checkpoint,可以传checkpoint_path参数。

4.9 计算BLEU

以下命令可以计算bleu:

./bin/tools/multi-bleu.perl ${DEV_TARGETS_REF} < ${PRED_DIR}/predictions.txt

注意:

如果你使用toy造数据,可以直接git clone https://github.com/daiwk/seq2seq.git,然后运行dwk_train.sh即可。



上篇: seq2seq
下篇: fasttext

comment here..